अलैंगिक / अयुग्मिक जनन (Asexual reproduction)

अलैंगिक / अयुग्मिक जनन (Asexual reproduction)

परिभाषा :

एक जनक से, बिना युग्मक निर्माण तथा संयोजन के, संतति का उत्पन्न होना, अलैंगिक जनन कहलाता है। नवजात संतति एक जनक के द्वारा अपने सभी जीन्स को प्राप्त करती है।

अलैंगिक जनन को अयुग्मक जनन (agamogenesis or agamogeny) के रूप में भी जाना जाता है। इसमें केवल समसूत्री विभाजन होता है, तथा इसे ’कायिक जनन’ भी कहते हैं। अलैंगिक जनन एकसमान रूप की संतति उत्पन्न करता है, जिसे सामान्यतः क्लोन के रूप में जानते हैं। वर्तमान में वैज्ञानिक कृत्रिम रूप से प्रयोगशाला में बहुकोशिकीय जीवों के क्लोन उत्पन्न करने में सक्षम हो गये हैं। (जैसे – जंगली सुअर के बच्चे को ’फ्रोस्टी’ एवं भेड़ के बच्चे को ’’डाॅली’’ नाम दिया गया)

प्राप्तिस्थल :

अलैंगिक जनन प्रोटोजोअन्स तथा कुछ निम्न जीवों जैसे – स्पंजों, सीलेन्ट्रेटों, कुछ कृमियों एवं ट्यूनिकेटों में पाया जाता है। यह उच्च अकशेरूकियों के बीच तथा सभी कशेरूकियों में अनुपस्थित होता है।

प्रकार :

अलैंगिक जनन प्रमुख पाँच प्रकार से होता है –

  1. द्विविभाजन (Binary fission)
  2. बहुखण्डन (Multiple fission)
  3. प्लाज्मोटोमी (Plasmotomy)
  4. मुकुलन (Budding)
  5. खण्डन

प्रजनन एवं इसके प्रकार (Reproduction and its type)

प्रजनन एवं इसके प्रकार (Reproduction and its type)

प्रजनन, जीवधारियों में स्वयं के समान जीवों की नई पीढ़ी को उत्पन्न करने की क्षमता है।

प्रजनन के आधारभूत लक्षण : सभी जीव प्रजनन करते हैं। जीवों में प्रजनन की विभिन्न विधियाँ होती हैं, किन्तु सभी विधियों में कुछ समान आधारीय लक्षण पाये जाते हैं, जो निम्न हैं –

1.  DNA की पुनरावृत्ति (replication) : यह प्रजनन का आण्विक आधार है।

2. कोशिका विभाजन, केवल समसूत्री या समसूत्री एवं अर्धसूत्री दोनों। यह प्रजनन का कोशिकीय आधार है।

3.  प्रजनन कायों (reproductive bodies) या इकाईयों का निर्माण।

4. प्रजनन कायों का संतति में विकास।

प्रजनन के प्रकार (Types of reproduction) : यह मुख्यतः दो प्रकार का होता है –

1. अलैंगिक (अयुग्मिक)  जनन

2. लैंगिक (युग्मिक)

हिंदी में भौतिक विज्ञान

हां तो दोस्तों आज हम स्टार्ट करते हैं हिंदी में फिजिक्स पढ़ना। भौतिक विज्ञान क्या जिसको हम अंग्रेजी में फिजिक्स के नाम से जानते हैं एक बहुत ही महत्वपूर्ण विषय है। ज्यादातर लोगों को सबसे ज्यादा परेशानियां फिजिक्स में ही आती है। हिंदी में भौतिक विज्ञान पढ़ाना और लिखना इंटरनेट पर थोड़ा मुश्किल काम है क्योंकि इसमें बहुत ज्यादा सूत्र मैथमेटिकल इक्वेशंस इत्यादि होती है। दुर्भाग्य दुर्भाग्य यह है कि हिंदी में बहुत ज्यादा सामग्री इंटरनेट पर मौजूद नहीं है।

असल में भौतिक विज्ञान को हिंदी में पढ़ना और समझना थोड़ा मुश्किल काम है क्योंकि इसकी terms हिंदी में थोड़ी मुश्किल है। अक्सर हमारे अध्यापक अपनी आगे की पढ़ाई अंग्रेजी मीडियम से करते हैं। उनके उनको हिंदी की terms को समझने और पढ़ाने में परेशानी होती है।

हम प्रयास कर रहे हैं कि आसान भाषा में भौतिक विज्ञान आपको समझाया जाए। यहां पर हम आसान हिंदी में भौतिक विज्ञान पढ़ाने की कोशिश करेंगे। अगर आपको शब्दावली समझने में कहीं कोई परेशानी हो तो आप कमेंट करके हमको अवगत करा सकते हैं। हालांकि हमारा प्रयास यही रहेगा कि हम हिंदी और अंग्रेजी दोनों भाषाओं की शब्दावली का प्रयोग करें। फिर भी अगर आपको कुछ समझने में कोई परेशानी हो तो आप कमेंट के द्वारा हम को अवगत करा सकते हैं।

धन्यवाद

समविभव पृष्ठ या रेखायें

समविभव पृष्ठ या रेखायें

समविभव पृष्ठ वह पृष्ठ है जिसके प्रत्येक बिन्दु पर विभव समान रहता है।

या

किसी दिये गये आवेश वितरण के लिये, समान विभव वाले बिन्दुओं का बिन्दुपथ समविभव पृष्ठ कहलाता है। समविभव पृष्ठ से सम्बन्धित निम्न बिन्दु ध्यान रखें :

1. समविभव रेखाओं का घनत्व हमें विद्युत् क्षेत्र के परिमाण की जानकारी देता है। रेखाओं का घनत्व अधिक होने पर विद्युत् क्षेत्र अधिक शक्तिशाली होगा।

2. विद्युत् क्षेत्र की दिशा सदैव समविभवी रेखाओं या पृष्ठ के अभिलम्बवत् होती है।

3. बिन्दु आवेश या गोलीय आवेश वितरण के कारण प्राप्त समविभव पृष्ठ संकेन्द्रीय गोले होते हैं।



4. एक समान विद्युत् क्षेत्र के लिये समविभव पृष्ठ, विद्युत बल रेखाओं के लम्बवत् खींचे गये समतल होते हैं।

5. किसी भी आकृति का एक धात्विक पृष्ठ सदैव एक समविभव पृष्ठ होता है अर्थात् जब एक धात्विक सतह को आवेशित किया जाता है तो यह सम्पूर्ण आवेश को इस प्रकार वितरित करती है कि इसके प्रत्येक बिन्दु का विभव समान रहता है चाहे वस्तु असमान आकृति की हो एवं इस पर नुकीले बिन्दु हांे।


मानलो ऐसा नहीं है अर्थात् नुकीले बिन्दुओं पर विभव अधिक है तो विभवान्तर के कारण आवेश अधिक विभव वाले बिन्दुओं से कम विभव वाले बिन्दुओं की ओर तब तक प्रवाहित होता है जब तक कि सभी बिन्दुओं का विभव समान न हो जाये।

6. समविभव पृष्ठ परस्पर कभी नहीं काटते हैं।

7. दो आवेशों के लिये समविभव पृष्ठ



विद्युत विभव.| परिभाषा, मात्रक एवं विमाएँ

विद्युत विभव (Electric Potential)

परिभाषा :

अनन्त से इकाई धनावेश को विद्युत क्षेत्र में स्थित किसी बिन्दु तक लाने में जितना कार्य करना पड़ता है उसे उस बिन्दु का विद्युत विभव कहते हैं। (अनन्त पर विद्युत विभव शून्य माना जाता है){ विद्युत विभव एक अदिश राशि है। इसे से व्यक्त करते हैं। \displaystyle V=\frac{W}{{{q}_{\mathbf{0}}}}

मात्रक एवं विमा :

SI मात्रक


C.G.S. मात्रक = e.s.u. या स्थैत वोल्ट 1 वोल्ट \displaystyle =\frac{\mathbf{1}}{\mathbf{300}} स्थैत वोल्ट

विमाएँ

\displaystyle [V]=[M{{L}^{2}}{{T}^{-3}}{{A}^{-1}}]


विद्युत विभव के प्रकार : आवेश की प्रकृति के आधार पर विभव के दो प्रकार हैं

धनात्मक विभव : धन आवेश के कारण
रुणात्मक विभव : रुण आवेश के कारण

बिन्दु आवेशों के कारण विद्युत विभव :


चित्रानुसार कई आवेशों के कारण बिन्दु च् पर विभव \displaystyle V=k\frac{{{Q}_{1}}}{{{r}_{1}}}+k\frac{{{Q}_{2}}}{{{r}_{2}}}+k\frac{{{Q}_{3}}}{{{r}_{3}}}+k\frac{\left( -{{Q}_{4}} \right)}{{{r}_{4}}}+... ए सामान्य रुप में, \displaystyle V=\sum\limits_{i=1}^{X}{\frac{k{{Q}_{i}}}{{{r}_{i}}}}

दो समान परिमाण व विपरीत प्रकृति के आवेशों के मध्य बिन्दु पर विभव V = 0 परन्तु \displaystyle E\ne 0

दो समान एवं एक ही प्रकृति के आवेशों को मिलाने वाली रेखा के मध्य बिन्दु पर \displaystyle V\ne 0 परन्तु E = 0

आवेश वितरण के कारण विभव :

सतत आवेश वितरण के कारण किसी बिन्दु पर विभव समस्त अल्पांश आवेशों के कारण उत्पत्र विभवों के योग के तुल्य होता है अर्थात् \displaystyle V=\int{dV},\,\,\,\,=\int{\frac{dQ}{4\pi {{\varepsilon }_{0}}r}}

विभव का ग्राफीय निरुपण :


जब समान परिमाण एवं विपरीत प्रकृति के आवेश एक निश्चित दूरी पर स्थित है : जब हम दोनों आवेशों को मिलाने वाली रेखा के अनुदिश धन.आवेश से रुण.आवेश की ओर गति करते हैं तो प्रारम्भ में विभव घटता है एवं केन्द्र पर शून्य हो जाता है परन्तु इस अन्तराल में विभव धनात्मक ही बना रहता है क्योंकि हमारी स्थिति धन.आवेश के अधिक नज़दीक है। जब हम केन्द्र से रुणावेश की ओर गति करते हैं तो सदैव विभव रुणात्मक होता है परन्तु परिमाण में बढ़ता (चित्र A) है।

जब समान परिमाण व समान प्रकृति के आवेश एक निश्चित दूरी पर स्थित है : जब एक आवेश दूसरे आवेश की ओर गति करते हैं तो प्रारम्भ में विभव घटता है केन्द्र पर न्यूनतम एवं फिर बढ़ने लगता है।

विभवान्तर : विद्युत क्षेत्र में स्थित दो बिन्दुओं A और B के बीच विभवान्तर कार्य के उस परिमाण के बराबर होता है जो इकाई धनावेश को बिन्दु A से B तक लाने में करना पड़ता है।

 अर्थात् \displaystyle {{V}_{B}}-{{V}_{A}}=\frac{W}{{{q}_{0}}} ; सामान्य रुप में \displaystyle W=Q.\,\Delta V\displaystyle \Delta V= विभवान्तर

विद्युत क्षेत्र

विद्युत क्षेत्र

प्रत्येक आवेश अपने चारों ओर एक निश्चित क्षेत्र उत्पत्र करता है। यदि एक आवेश \displaystyle {{Q}_{1}} इसके नजदीक स्थित एक अन्य आवेश \displaystyle {{Q}_{2}} पर बल आरोपित करता है तो यह कहा जा सकता है कि \displaystyle {{Q}_{2}}\displaystyle {{Q}_{1}} के क्षेत्र में रखा हुआ है इसलिए यह बल का अनुभव करता है या
Q1, Q2 के क्षेत्र में रखा है इसलिए यह बल का अनुभव करता है इस प्रकार एक आवेश के चारों ओर वह क्षेत्र, जिसमें कोई अन्य आवेश बल का अनुभव करता है, विद्युत क्षेत्र कहलाता है।

विद्युत क्षेत्र की तीव्रता \displaystyle (\vec{E}): विद्युत क्षेत्र में किसी बिन्दु पर स्थित एकांक धन_आवेश जितने बल का अनुभव करता है उसे उस बिन्दु पर विद्युत क्षेत्र की तीव्रता कहते हैं। \displaystyle \vec{E}=  \frac{{\vec{F}}}{{{q}_{0}}}


जहाँ \displaystyle {{q}_{0}}\to 0 ताकि इस आवेश की उपस्थिति आवेश स्त्रोत Q को प्रभावित न करे और इसके विद्युत क्षेत्र में कोई परिर्वतन न हो इसलिए विद्युत क्षेत्र की तीव्रता के लिए सही व्यंजक इस प्रकार है \displaystyle \vec{E}=\underset{{{q}_{0}}\to 0}{\mathop{Lim}}\,\,\,\,\frac{{\vec{F}}}{{{q}_{0}}}


मात्रक एवं विमीय सूत्र : SI मात्रक एवं CGS मात्रक

विमाएँ [\displaystyle E] =[\displaystyle ML{{T}^{-3}}{{A}^{-1}}]

विद्युत क्षेत्र की दिशा : विद्युत क्षेत्र (तीव्रता){ \displaystyle \vec{E} एक सदिश राशि है। धनावेश के कारण विद्युत क्षेत्र की दिशा सदैव आवेश से दूर की ओर एवं रुणावेश के कारण आवेश की ओर होती है।


विद्युत बल एवं विद्युत क्षेत्र में सम्बन्ध : विद्युत क्षेत्र \displaystyle \vec{E} में रखा एक आवेश ; (Q), \displaystyle F=QE बल का अनुभव करता है। यदि आवेश धनात्मक है तो बल की दिशा विद्युत क्षेत्र की दिशा में होती है और यदि रुणात्मक है तो बल की दिशा विद्युत क्षेत्र की विपरीत दिशा में होती है।


विद्युत क्षेत्र का अध्यारोपण (कई आवेशों के कारण किसी एक बिन्दु पर विद्युत क्षेत्र): कई आवेशों के कारण किसी एक बिन्दु पर परिणामी विद्युत क्षेत्र, प्रत्येक आवेश के कारण उस बिन्दु पर उत्पत्र विद्युत क्षेत्र के सदिश योग के तुल्य होता है।

  \displaystyle \vec{E}={{\vec{E}}_{1}}+{{\vec{E}}_{2}}+{{\vec{E}}_{3}}+...

 दो विद्युत क्षेत्रों के परिणामी विद्युत क्षेत्र का परिमाण


  \displaystyle E=\sqrt{E_{1}^{2}+E_{2}^{2}+2{{E}_{1}}{{E}_{2}}\cos \theta } एवं दिशा \displaystyle \tan \alpha =\frac{{{E}_{2}}\sin \theta }{{{E}_{1}}+{{E}_{2}}\cos \theta }

सतत एवं एकसमान आवेश वितरण के कारण विद्युत क्षेत्र : इस प्रकार के वितरण में कई आवेश एक निश्चित अल्प दूरी पर व्यवस्थित होते हैं।

विद्युतदर्शी (Electroscope) क्या है

विद्युतदर्शी

यह एक सरल उपकरण है, जिसकी सहायता से किसी वस्तु पर आवेश की उपस्थिति को ज्ञात किया जाता है। जब एक आवेशित वस्तु को इसकी धात्विक घुण्डी (Knob) के सम्पर्क में लाते हैं तो कुछ आवेश स्वर्ण पतियों (Leaves) पर स्थानान्तरण हो जाता है, एवं प्रतिकर्षण के कारण ये पतियाँ फैल जाती हैं। यदि एक आवेशित वस्तु को पहले से आवेशित विद्युतदर्शी के नजदीक लाते हैं और यदि वस्तु का आवेश और विद्युतदर्शी पर उपस्थित आवेश एक ही प्रकृति का है तो पतियाँ ओर अधिक फैल जाती हैं और यदि विपरीत प्रकृति का है तो पतियाँ सामान्यत: सिकुड़ (Converge) जाती है परन्तु यदि प्रेरण प्रभाव बहुत तीव्र है तो पतियाँ सिकुड़ने के बाद फिर से फैल जाती हैं।

अनावेशित विद्युतदर्शी

आवेशित विद्युतदर्शी

Real Numbers – Revisiting Rational and Their Decimal Expansions

REVISITING RATIONAL NUMBERS AND THEIR DECIMAL EXPANSIONS :

We have already studied in the previous class that rational numbers have either a terminating decimal repeating decimal expansion. We have to consider a rational number as \displaystyle \frac{p}{q} (where \displaystyle q\ne 0) as terminating or non-terminating repeating (or recurring) decimal expansion.

e.g. 

(A) (i)    0.0527    = 

 (ii)    26.12489     =

(B) (i)    0.0875    = 

 (ii)    23.3408    = 

Now, we have converted a real number whose decimal expansion terminates into a rational number of the form. \displaystyle \frac{p}{q}, where p and q are coprime, and prime factorization of denominator

(i.e., q) has only power of 2 or power of 5 or both. We should also understand that the denominator is a power of 10 and can be only prime factors 2 and 5.

Now, we get that this real number is a rational number of the form \displaystyle \frac{p}{q}, where the prime factorization of q is of the form 2n, 5m, and n, m are some non-negative integers.

Theorem : Let x be a rational number whose decimal expansion terminates. Then x can be expressed in the form \displaystyle \frac{p}{q}, where p and q are coprime, and the prime factorization of q is of the form 2n5m, where n, m are non-negative integers.

Let \displaystyle \frac{a}{b} be a rational number in the lowest form such that the prime factorization of b is of the form \displaystyle {{2}^{n}}\times {{5}^{m}} . Where n and m are non-negative integers.

Example:

(i) \displaystyle \frac{3}{8}=\frac{3}{{{2}^{3}}}=\frac{3\times {{5}^{3}}}{{{2}^{3}}\times {{5}^{3}}}=\frac{375}{{{10}^{3}}}=0.375

(ii) \displaystyle \frac{13}{125}=\frac{13}{{{5}^{3}}}=\frac{13\times {{2}^{3}}}{{{5}^{3}}\times {{2}^{3}}}=\frac{104}{{{10}^{3}}}=0.104

(iii) \displaystyle \frac{2139}{1250}=\frac{2139}{2\times {{5}^{4}}}=\frac{2139\times {{2}^{3}}}{{{2}^{4}}\times {{5}^{4}}}=\frac{2139\times 8}{{{\left( 2\times 5 \right)}^{4}}}=\frac{17112}{{{10}^{4}}}=1.7112

Theorem : Let \displaystyle x=\frac{p}{q} be a rational number, such that the prime factorization of q is of the form 2n5m, where n, m are non-negative integers. Then x has a decimal expansion which terminates.

Example:

\displaystyle \frac{1}{7}

In this case, denominator 7 is not of the form 2n5m. So, from above mentioned theorems, \displaystyle \frac{1}{7} will not have a terminating decimal expansion. Hence, 0 (zero) will not be remainder and the remainders will start repeating after a certain stage. We have a block of digits, 142857, repeating in the quotient of \displaystyle \frac{1}{7}.

Hence, it is is true that any rational number is not converted by the above theorems.


Theorem :Let \displaystyle x=\frac{p}{q} be a rational number, such that the prime factorization of q is not of the form 2n5m, where n, m are non-negative integers. Then, x has a decimal expansion which is not-terminating repeating (recurring).

Hence, we can say that the decimal expansion of every rational number is either terminating or non-terminating repeating (recurring).

Real Number-Revisiting Irrational Numbers

REVISITING IRRATIONAL NUMBERS :

We have studied in the previous class about rational numbers as well as irrational numbers. Both are the members of the REAL NUMBERS family. We have also studied how to locate irrational numbers on the number line.

Any rational number is represented by \displaystyle \frac{p}{q}; where \displaystyle q\ne 0 whereas irrational number is represented by ‘s’

0.10110111011110….. etc. are the examples of irrational numbers.

Theorem : Let p be a prime number. If p divides a2, then p divides a, where a is a positive integer.

Proof :

Let the prime factorization of a be as follows :

a = p1, p2, p3, p4, p5, …., …. pn

\displaystyle \therefore  a2 = (p1, p2, p3, p4, …. Pn) (p1, p2, p3, p4, …. Pn)

= p12, p22, p32, p42, …………… pn2.

It is given that p divides a2, so from the Fundamental Theorem of Arithmetic p is one of the prime factors of a2. Also a2 having prime factors p1, p2, p3, ….. pn.

Hence, p is one of p1, p2, p3, …… pn.

Example 6: To prove \displaystyle \sqrt{2} is irrational.

Solution. Let us assume that \displaystyle \sqrt{2} is rational.

Now, we can find integers r and \displaystyle s\left( \ne 0 \right) such that \displaystyle \sqrt{2}=\frac{r}{s}.

Again let r and s have a common factor other than 1. Then we can divide by common factor to get, where a and b are coprime.

\displaystyle \Rightarrow   \displaystyle b\sqrt{2}=a …….. (i)

\displaystyle \Rightarrow   \displaystyle {{\left( b\sqrt{2} \right)}^{2}}={{\left( a \right)}^{2}} [squaring both sides]

\displaystyle \Rightarrow  2b2 = a2

\displaystyle \therefore 2 divides a2.

Now, by above theorem

2 divides a also.

So, we can write a = 2c for some integer c.

\displaystyle \Rightarrow   \displaystyle b\sqrt{2}=2c [From (i)]

\displaystyle \Rightarrow  2b2 = 4c2 [Squaring both sides]

\displaystyle \therefore  b2 = 2c2 ……. (ii)

i.e., 2 divides b2

So, 2 divides b [by using above theorem with p = 2]

Again, a and b have at least 2 as a common factor.

But this contradicts the fact that a and b have no common factors other than 1.

This contradiction has arisen because of our incorrect assumption that \displaystyle \sqrt{2} is rational.

Hence, we conclude that \displaystyle \sqrt{2} is irrational.

Real Numbers-The Fundamental Theorem of Arithmetic

THE FUNDAMENTAL THEOREM OF ARITHMETIC

We have already studied in the previous classes that any natural can be written as a product of its prime factors. e.g. = 3 = 3, 6 = 2 \displaystyle \times 3, 275 = 11 \displaystyle \times 25 etc. i.e, any natural number can be obtained by multiplying prime numbers.

If we take prime numbers like 2,3,5,7,11,13, and 29 and if we multiply some or all of these numbers, allowing them to repeat as we can, then we can get a large collection of positive integers (infinitely).

 e.g.             11 \displaystyle \times 13 \displaystyle \times 29 = 4147

 7 \displaystyle \times 11 \displaystyle \times 13 \displaystyle \times 29 = 29029

 5 \displaystyle \times 7 \displaystyle \times 11 \displaystyle \times 13 \displaystyle \times 29 = 145145

 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 11 \displaystyle \times 13 \displaystyle \times 29 = 435435

 2 \displaystyle \times 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 11 \displaystyle \times 13 \displaystyle \times 29 = 870870

 22 \displaystyle \times 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 11 \displaystyle \times 13 \displaystyle \times 29 = 1741740

 23 \displaystyle \times 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 11 \displaystyle \times 13 \displaystyle \times 29 = 3483480

Now, we see there are infinitely many primes and so we can get an infinite collection of numbers by all the primes and all possible products of primes.

In the other hand, if we factorise positive integers, we have to do the opposite of what we have done so far.

We can use factor tree for factorise of 65520 as shown below.


Hence, we have factorised 65520 as 2 \displaystyle \times 2 \displaystyle \times 2 \displaystyle \times 2 \displaystyle \times 3 \displaystyle \times 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 13 as a product of primes, i.e., 65520 = 24 \displaystyle \times 32 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 13 as a product of powers of primes.

If we take 123456789 then it is equal to 32 \displaystyle \times 3803 \displaystyle \times 3607.

In these factors 3803 and 3607 are primes. It means we have to understand that every composite number can be written as the product of primes. It is called Fundamental Theorem of Arithmetic because of its basic crucial importance to the study of integers.

Hence, we can say Fundamental Theorem of Arithmetic as follows :

Every composite number can be expressed (factorised) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur, i.e., for any composite number there will be one and only one way to express it as a product of primes, as long as we are not particular about the order in which the primes occur.

e.g    2 \displaystyle \times 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 11 as the same as 5 \displaystyle \times 7 \displaystyle \times 11 \displaystyle \times 2 \displaystyle \times 3 or any other possible order in which these primes are written. It can be defined as follows :

The prime factorization of a natural number is unique, except for the order of its factors.

If any composite number is x, then the factor of x = p1 , p2 , p3 , …. Pn, where p1, p2, p3, …. Pn are primes and written in ascending order, i.e., \displaystyle {{p}_{1}}\le {{p}_{2}}\le {{p}_{3}}......\le {{p}_{n}}.

If we combine the same primes, we will get powers of primes.

E.g.    65520 = 2 \displaystyle \times 2 \displaystyle \times 2 \displaystyle \times 2 \displaystyle \times 3 \displaystyle \times 3 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 13

24 \displaystyle \times 32 \displaystyle \times 5 \displaystyle \times 7 \displaystyle \times 13

When we decide that the order will be ascending, then the way the number is factorised, is unique.

There are many applications of the Fundamental Theorem of Arithmetic in mathematics as well as in other fields.

Example 4:Consider the number 16n, where n is a natural number. Check whether there is any value of n for which 16n ends with the digit zero.

Solution. If the number 16n, for any n, were to end with the digit zero, then it would be divisible by 5 and so its prime factorization must contain the prime 5.

16n = (24)n = 24n

The only prime in the factorization of 16n is 2.

There is no other primes in the factorization of 16n = 24n

[By uniqueness of the Fundamental Theorem of Arithmetic]

5 does not occur in the prime factorization of 16n for any n.

4n does not end with the digit zero for any natural number n.

We have already learnt how to find the HCF and LCM of two positive integers using the Fundamental Theorem of Arithmetic in previous classes, without realising it. This method is also called the Prime factorization method.

Example :

Find the LCM and HCF of 18 and 60 by the prime factorization method.

Solution.

18 = 2 \displaystyle \times 3 \displaystyle \times 3 = 21 \displaystyle \times 32

60 = 2 \displaystyle \times 2 \displaystyle \times 3 \displaystyle \times 5 = 22 \displaystyle \times 31 \displaystyle \times 51

We get HCF of 18 and 60 as 2

And LCM of 18 and 60 as 180

But now, we have to understand that

HCF of 18 and 60 is 21 = Product of the smallest power of each common prime factor in the numbers.

LCM of 18 and 60 is 22 \displaystyle \times 32 \displaystyle \times 5 = Product of the greatest power of each Prime factor, involved in the numbers.

For any two positive integers a and b , (HCF of a and b) \displaystyle \times (LCM of a and b) = a x b